
System Design for DSP Applications in Transaction Level
Modeling Paradigm

Abhijit K. Deb, Axel Jantsch, Johnny Öberg
Department of Microelectronics and Information Technology

Royal Institute of Technology, 164 40 Kista, Sweden
Email: { abhijit | axel | johnny } @ imit.kth.se

ABSTRACT
In this paper, we systematically define three transaction level
models (TLMs), which reside at different levels of abstraction
between the functional and the implementation model of a DSP
system. We also show a unique language support to build the
TLMs. Our results show that the abstract TLMs can be built and
simulated much faster than the implementation model at the
expense of a reasonable amount of simulation accuracy.

Categories and Subject Descriptors
J.6 [Computer-Aided Engineering]: Computer-aided design
(CAD); C.3 [Special-Purpose and Application-Based Systems]:
Signal processing systems, Real-time and embedded systems.

General Terms
Design, Languages.

Keywords
Transaction level modeling, system design, DSP, grammar.

1. INTRODUCTION
The diff iculties of system design are persistently increasing owing
to the well-known reasons, like the integration of more
functionality on a system, time-to-market pressure, productivity
gap, and performance requirements. To manage these diff iculties,
the interface based design methodologies have been proposed
[1][2]. Here, the basic idea is to separate the communication and
the computation aspects of a design so that systems could be
modeled with ease at higher levels of abstraction.

Vissers et al. describe a heterogeneous approach to achieve the
separation between the communication and the computation of a
DSP system [3][4]. Sangiovanni-Vincentell i et al. advocates the
separation between function (i.e., computation) and architecture
(i.e., communication), and employs the abstract-CFSMs to tackle
design challenges [5]. Keutzer et al. have elaborately discussed the
separation between these two design issues, and proposed the
platform based design methodology [6]. They explain that,
function is the behavior of a system that describes the input-output
relation. The implementation architecture, on the other hand, states
how the function is implemented. Separation of these two aspects
splits the design task into smaller and more manageable problems.
Their ideas are commerciali zed in the Cadence VCC tool.

The separation between the communication and the computation
aspects of a design can be effectively achieved using transaction
level models (TLMs). The concept of TLM first appeared in the
domain of system modeling languages, like SystemC [7] and
SpecC [8]. In [7], a TLM is defined as a model where
communication between modules is modeled in a way that is
accurate in terms of what is being communicated, but not in a way
that is structurally accurate (i.e., the actual wires and pins are not
modeled). They have also insisted that the communication between
modules be modeled using function calls.

Gajski et al. have defined a TLM as a model where the details of
communication among components are separated from the details
of computation within the components [9]. They also present the
system modeling graph where computation and communication are
shown in two axes. Each axis has three degrees of time accuracy:
untimed, estimated, and cycle accurate.

Typicall y, the functional model (FM) of a DSP system is buil t at
the most abstract level where both communication and
computation takes place in zero-time. In the implementation
model (IM), however, both communication and computation are
cycle accurate. In the context of DSP systems design, we present
three TLMs between the FM and IM. These TLMs are the process
transaction model (PTM), the system transaction model (STM),
and the bus transaction model (BTM). The coordinates of all these
models are shown in the system modeling graph of Figure 1. The
thick arrow in gray shows the design flow proposed in this paper.
Throughout the design flow, design decisions are added to an
abstract model to create a less abstract model.

The contribution of this paper is the systematic formulation of the
three TLMs in the context of DSP systems design. In addition, we
show how these models can be buil t with ease using the grammar
based language of MASIC. The DSP system design methodology
MASIC, short for Maths to ASIC, provides an elegant grammar
based language to build abstract system models [10]. The
technique of building cycle accurate models in MASIC is
presented separately in [11].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republi sh, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC'04, June 7-11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00

Figure 1: Coordinates of different system models in system
modeling graph

A. Functional model
B. Process transaction model
C. System transaction model
D. Bus transaction model
E. Implementation model

cycle
accurate

communication

estimated

cycle
accurate

estimated

C

D E

computationB
zero

delay
zero
delay

A

Our results show that the models at the higher abstraction level can
be built with ease and simulated much faster than the less abstract
models without significant loss of accuracy. Next, in Section 2 we
discuss the commonly practiced DSP systems modeling styles and
the MASIC language, which is used to build the TLMs. Our
methodology is described in Section 3, followed by an illustrative
example in Section 4. Section 5 presents the experimental results.
Finally, we conclude this work in Section 6.

2. BACKGROUND
Functional modeling of signal processing applications usually
begins using Kahn Process Network (KPN) [12] or different forms
of dataflow networks li ke SDF [13], DDF [14], etc. Processes in a
KPN are connected through infinite length point-to-point FIFOs.
Graphically, processes are drawn as nodes and FIFOs as arcs.
Processes read from the input FIFO when data is available (i.e.,
blocking read), perform computation in their private memory,
manipulate their own state space, and write results in an output
FIFO (non-blocking write). An important issue regarding an
optimum implementation of these networks is to find a schedule to
determine which process executes on which resource at which
point in time. There exists an eff icient technique of scheduling
SDF networks for a sequential or parallel implementation [13].

In our design flow, from the functional model through different
TLMs to implementation model, the functionality remains the
same. It is only the protocol of data transaction that evolves from
abstract FIFO channels to bus protocols, component interfaces, etc.
There are different ways of describing a communication protocol.
One way is to specify a state machine that implements the protocol
using an HDL description. This is a low level approach. A more
abstract way is to specify the grammar of the protocol and
synthesize a controller from it.

There exist academic [15][16][17] and commercial [18] grammar
based tools for protocol description. Though these approaches do
not address the problem of system design, they demonstrate two
clear advantages, firstly: the ease of protocol description using
grammar, and secondly: the smooth path to HW synthesis from a
grammar description. Inspired by these advantages, we have
adopted the grammar based style in our methodology. Abstract
communication modeling has become a part of different system
modeling languages like, SystemC [7] and SpecC [8]. However,
we argue that grammars provide a more intuitive way of
describing protocols than the C++ or C language.

Grammars are primaril y used in compiler development for pattern
matching [19]. We use grammars to recognize signaling pattern,
which represents a signaling protocol, and to produce the desired
action when the pattern is seen at the input stream. The actions
could be to generate a synchronization signal, store data in a
buffer, or call a C function with the data stored in a buffer. There
are two major sections of the MASIC description of a model:
• Grammar rules: describe the protocol of data transaction.
• Constraints to the rules: specify architectural resources like FIFOs,

synchronization signals, buses, memories, IOs (i.e., interface), etc.

The syntax of the MASIC grammar rule is shown in Figure 2. We
have added an optional clock_nam e on top of the YACC-li ke
grammar rule. Reading different streams at different speeds
symboli zes multiple clocks in a system and allows modeling of
multi-rate systems. The rule in the figure says: a strea m is read at
the rate of the given clock . Next, it says, if a given conditio n is
met and a certain pattern is seen at the stream, then the
corresponding action(s) inside the curly braces would take
place. The pattern-action pair of a grammar rule provides a natural
way of describing transactions.

3. TLM BASED DESIGN OF DSP SYSTEMS
3.1 Functional Model (FM)
At this level, individual DSP functions are developed in C or
MATLAB li ke environment. These functions are connected by
infinite length FIFOs. At this stage, design issues are primaril y
algorithmic and verification is concerned with making sure that the
specified signal processing figures of merits are met. The output of
this level is a set of DSP functions in C without side effects.

3.2 Process Transaction Model (PTM)
The coordinate of PTM in the system modeling graph is shown in
Figure 1, which reveals the fact that the communication in PTM
takes place without any delay and the computation delay of the
model is at an estimated level. We reuse the C functions developed
at the FM level and add design decisions to build a PTM. The
design decisions at this level are: the sizes of the FIFOs, the
process to resource mapping, and a schedule of process execution.
The sizes of the FIFOs for an SDF network can be found using the
balance equation for each arc between the processes of a network
[14]. Though, finding the FIFO size is not possible for the general
case of KPN, there exist scheduling techniques to find a reasonable
upper bound using simulations with varying input data set [20].

While a function is mapped to SW to achieve flexibili ty, mapping
to a HW block is done for performance critical parts. Traditionall y,
the mapping of functions on the architectural resources is viewed
as a scheduling problem. However, the order of process execution
given by a schedule is not enough to build a PTM, because:
• scheduling technique, for example in [13], only provides a sequence

of process execution, where execution is an atomic operation.
• scheduling assumes the ideal situation that processes have their local

memories.
• scheduling [13] does not deal with the system interface to the

environment and buffering of input data. Hence, the assumption of
being able to schedule an input node at any time has to be
synchronized with the availability of valid data at input.

To build a PTM, we split the atomic process execution into a
sequence of read, compute and write operations, and these
operations are properly synchronized. Let us consider the example
SDF network shown in Figure 3(a). Here process p1 reads one
token from FIFO f1 , which has a delay of 2 unit; and produces
one token in f 2, which has no delay. Corresponding values for the
other processes and FIFOs are shown in the figure. Considering a
run time of 1-unit for process p1 and p2, and 3-units for process
p3, an optimal schedule for the SDF network is shown in
Figure 3(b). Here process p1 and p2 are running on processor1,
and process p3 is running parallelly on processor2. This schedule
runs well if the f1 has a depth of two.

Now, if processor2 does not have enough internal memory it
would write directly to the output FIFO f1. Since the size of f1

(stre am) [@clock_ name] : [(co ndit i on)] pat ter n1 { acti on1}

 | pattern2 {actio n2}

 |

 | reset {actio n-n}

 ;

Figure 2: General syntax of a grammar rule

is bounded, this operation would overwrite the FIFO and cause
processor1 to read new data before it has finished processing the
old data. To synchronize them properly, processor2 has to wait
until processor1 has finished reading tokens from arc1 (assuming
processor1 has enough input buffer), or until processor1 has
finished executing process p1 twice (assuming processor1 has no
input buffer). We shall show how such synchronization can be
easil y expressed using grammar rules.

The invocation of each function is controlled by a grammar rule.
The functions communicate over dedicated FIFO channels using
get and put procedures, and hence no physical address is needed.
The get and put procedures provide atomic bulk transfer
capability and timing is modeled only for major synchronization
events. Several grammar rules read their input streams in parallel
and have an inherent end recursion. Thus the model represents the
concurrent non-terminating behavior of a system. The concurrent
rules are arbitrated by an abstract controller, which provides
scheduling and synchronization of events.

Let us consider the process shown in Figure 4 that reads data from
in_FIFO and writes data to out_FIFO . It reads the data_Rdy
and ro om_Rdy synchronization signals from the controller to know
if there is data available in in_FIF O and if there is room available
in out_FIF O, respectively. Assuming that the process has an input
and an output data buffer, a grammar rule with two alternatives is
shown in Figure 5(a). The fi rst alternative specifies: if data is
ready in in_FIFO then it would be copied to in_Buf ; read_Rdy
would be asserted so that another process can start writing to this
FIFO; and a C function would execute on in_Bu f and write result
in out_Bu f . To model the computation delay, the process waits
for an estimated amount of time before asserting the result_Rdy
signal. The second alternative says: when there is room in the
out_FIFO , the out_Bu f is copied to out_FIFO; and the
result_Rdy signal is deserted.

Figure 5(b) is more interesting. In this case, we assume that the
process shown in Figure 4 has neither input nor output data buffer.
So, if it receives a data_Rd y signal it can not start executing the
C function. However, if it receives both data_Rdy and room_Rdy
signal, then it executes the C function directly on the data in
in_FIFO and saves the result in out_FIF O.

The addition of such simple rules keeps the order of process
execution as suggested by a schedule and adds the necessary
synchronization to make the PTM work correctly with different
implementation restrictions. The MASIC compiler reads the PTM
written using MASIC language and generates a VHDL description.
The VHDL model imports the DSP functions in C and performs a
cosimulation using the Foreign Language Interface (FLI) of
VHDL. Simulation of this model shows the system performance

based on the estimated computation delay. If the run-time of a
function is data independent, the computation delay of the function
on a target architecture can be found using system level estimators.
Even for the data dependent case, the computation time is bounded
in hard real time applications. If performance requirements are not
met then design decisions are changed. For example, the number
of resources can be increased to add computational power. Again,
as shown in [20], FIFO sizes can be increased to obtain a better
schedule with higher performance. It is necessary to note that,
though a process to processor mapping is assumed no hard
implementation decision has been made. Hence, it does not require
an expensive redesign effort to change the mapping decision.

3.3 System Transaction Model (STM)
While PTM captures the process to processor mapping and the
computation delay, it does not capture any information regarding
the implementation of the FIFOs and the communication
architecture. There is a wide design space related to the
implementation of the communication architecture. For example,
the FIFOs could be implemented using message passing or shared
memory; the single address space of the shared memory could
have centrali zed or distributed physical memory; the bus might
have different widths, protocols and arbitration priorities, etc.
Instead of buses a NoC based architecture, as proposed in [21], can
be used to implement the communication architecture.

STM is truly the system model that captures information on both
computation and communication aspects of the design, however
both of them are at an estimated level. At this level, we decide how
the FIFOs would be implemented and what type of architecture
would be used to exchange data. Communication architectures add
significant amount of delay due to synchronization overhead. The
delays would depend on bus width, bus protocol, priorities, etc.
Currently, the communication delay is estimated by observing the

put()
wait for estimated_time
result_Rdy <= ‘0’

get()
wait for estimated_time
read_Rdy <= ‘1’

read_Rdy <= ‘0’
result_Rdy <= ‘0’

read_Rdy <= ‘0’
compute (call C-function)
wait for estimated_time
result_Rdy <= ‘1’

data_Rdy = ‘1’

room_Rdy = ‘1’da
ta

_R
dy

 =
 ‘1

’

WRITE

READ

COMPUTE

INIT

Figure 6: Control flow of a typical process in STM

Figure 3: (a) An SDF network, (b) schedule for two parallel
processors

(a) D

2D

1

1

2

1

21

p3p1

p2

f1

f2
f3

(b)

p1 p1 p2

processor-2 :

processor-1 :

time
t0 t1 t2 t3

p3

Figure 4: A process of a network

in_Buf compute

process

out_FIFOout_Bufin_FIFO

(data_Rdy, room_Rdy) @clk:
 ‘1’, ‘0’ { get(in_FIFO, in_Buf);
 read_Rdy <= ‘1’;
 wait until clk = ‘1’;
 read_Rdy <= ‘0’;
 call c_fun1(in_Buf, out_Buf);
 wait for 3 us;
 result_Rdy <= ‘1’; }

 | ‘0’, ‘1’ { put (out_Buf, out_FIFO);
 result_Rdy <= ‘0’; }
 |

(a)

(data_Rdy, room_Rdy) @clk:
 ‘1’, ‘0’ { null; }

 | ‘1’, ‘1’ { call c_fun2(in_FIFO, out_FIFO);
 wait for 5 us;
 read_Rdy <= ‘1’;
 wait until clk = ‘1’;
 read_Rdy <= ‘0’; }
 |

(b)

Figure 5: Example grammar rules

communication protocol of the target bus architecture in an ad-hoc
basis. However, more accurate delay figures can be estimated
using the trace based analysis technique presented in [22].

The transactions modeled at this level are same like the PTM.
Processes read from and write to FIFOs using get and put
procedures. However, at the end of each get/put operation,
estimated communication delay is added using the wait statement.
The control flow synchronization points of a process in STM are
shown in the control flow of Figure 6. As shown in the figure, a
process reads and writes using atomic bulk transfer. However, the
read_Rdy signal does not appear before the estimated amount of
delay. Hence, the simulation of this model shows both
communication and computation delays at an estimated level. If
simulation result of the STM is not satisfactory then we need to
change the design decisions. Since system transactions have not
yet been modeled using the actual wires and pins, changing design
decisions is fairly easy at this level.

3.4 Bus Transaction Model (BTM)
So far, we have already decided how our processes and FIFOs
would be implemented. At this level we model the communication
among the resources at a structurally accurate level. We elaborate
the atomic bulk transfers between the synchronization points of the
STM and access the memory through shared communication
medium (e.g., bus) using physical address. The BTM does not alter
the execution semantics of the STM because the points of
synchronization are maintained. Simulation of the BTM reveals
the clock true communication delay of the implementation
architecture. The design steps to create a BTM from an STM
involves the following tasks:
• Elaborating the abstract communication channels into the detailed

signaling mechanism required to express the bus protocol and the
arbitration logic. If several functions are mapped on a single core,
the channel between the functions needs to be implemented using
the communication primitive offered by the operating system.

• Describing the interface of the hardware blocks onto which the
functions are mapped to. To ease reuse of predesigned components
we create the bus functional models (BFMs) of embedded cores and
interface description of IP blocks. MASIC descriptions are used to
build these models and they are saved in a library from where they
are instantiated.

• Adapting the component interfaces to the bus protocol. We describe
the glue logic between the pre-designed blocks and the bus
architecture. The adapters can be saved in the li brary and reused.
Currently the glue logic is written manually. However, this task can
be automated, for example, using the approach presented in [23].

3.5 Implementation Model (IM)
As shown in the system modeling graph of Figure 1, both the
communication and computation are clock true at this level. For a
HW implementation, the C functions are replaced with the RT
level description of the IP block. For a SW implementation, on the
other hand, the C functions are compiled to the target architecture.
Since a bus functional model represents the external interface of a
core and generates the cycle accurate transactions supported by the
core (e.g., read, write, burst read, burst write, etc.), the glue logic
developed at the BTM level works at the IM level as well. A
comparison of different system models is given in Table 1.

4. AN ILLUSTRATIVE EXAMPLE
Here we are using the Linear Predictive Coding (LPC) example. It
samples input values at a rate of 8 kHz and buffers 160 input
samples. Then it performs the windowing operation on the samples
and generates another 160 data. Next, the autocorrelation function
takes this result and computes 11 autocorrelation lags, which the
LPC block reads to compute 10 coeff icients. Finally, the reflection
coeff icients are computed from the LPC values. At the FM level
we build four C functions that compute the windowing (wi n),
autocorrelation (co r), LPC (lp c) and reflection (rf l) coeff icients.

We decide to implement our four DSP functions on four MIPS32-
4K processor cores. For the appli cation at hand, we use SDF
network scheduling technique, which also gives us the FIFO depth.
The interface specification of the system requires sharing the
in_port for downloading the windowing coeff icients at startup,
and then starting regular processing of data. Hence the startup
sequence would look like: reset, downloading coefficients, and
then regular data processing. We reuse the C functions built at the
FM level to create a PTM, as shown in Figure 7. The C functions,
interface to the environment, and the FIFO channels are declared
using grammar constraints. The grammar rules are used to describe
the atomic data transaction among the functions, and to model the
necessary synchronization primitives to handle the input data
buffering and startup sequence. MASIC description of abstract
PTM-like model has been shown elaborately in [10].

Table 1: Comparison of different system models

Communication Computation Transaction/Operation Model characteristic

Functional
Model (FM)

zero-delay zero-delay - process execution (atomic execution consisting of read,
computation, and write operations)

process to resource mapping is not done,
communication through infinite length FIFO

Process
Transaction
Model (PTM)

zero-delay estimated - bulk read from FIFO
- computation (C function call , with estimated delay)
- bulk write to FIFO

process to HW/SW mapping is assumed,
communication through finite length FIFO,
read/write to FIFO using get/put procedures

System
Transaction
Model (STM)

estimated estimated - bulk read from FIFO (with estimated delay)
- computation (C function call , with estimated delay)
- bulk write to FIFO (with estimated delay)

communication through get/put procedures
from/to FIFO with estimated delay for
memory access using shared medium

Bus
Transaction
Model (BTM)

cycle accurate estimated - memory read (Req, Ack, Address, Data, Split)
- computation (C function call , with estimated delay)
- memory write (Req, Ack, Address, Data, Split)

communication through cycle accurate
component interface and shared medium,
read/write to memory using physical address

Implementation
Model (IM)

cycle accurate cycle accurate - memory read (Req, Ack, Address, Data, Split)
- cycle accurate computation (RTL, ISS)
- memory write (Req, Ack, Address, Data, Split)

cycle accurate computation– RT level for
HW implementation, or instruction level for
SW implementation

Figure 7: PTM of the LPC codec

lpc
in_port

dataBufcoefBuf winBuf corBuf lpcBuf

coef_out
rflcorwin

Next, we decide to realize communication architecture using the
AMBA on-chip bus [24]. To build an STM from the PTM, we add
estimated communication delay after each get and put operation
of the PTM. This it still a fairly abstract model as the data
transaction are not modeled using pins and wires.

Next, at the BTM level, the communication is modeled at the cycle
accurate level. The bus functional model (BFM) of the MIPS32-
4K core [25] is used as the bus master module. The
communication channels are elaborated according to the AMBA
AHB specification. A simplified view of the AMBA architecture is
shown in Figure 8. The data and control lines are shown in solid
and thin arrows, respectively. The request and grant lines between
masters and arbiter are not drawn.

The AMBA AHB uses separate read and write buses operating
through a centrally multiplexed architecture. To gain performance,
it works in a pipelined fashion where the address-phase of a
transfer proceeds simultaneously with the data-phase of the
previous transfer. Now we shall show how these complex
transactions can be described using our grammar based technique.

The control, address and data buses are represented as internal
signals using grammar constraints. We connect the read and write
data buses to the read and write data ports of the bus functional
model of the core. The address and control information of the
master, which wins the arbitration, are propagated to the slaves
through the address bus HADDR. The address decoder, shown in
Figure 8, selects a slave by combinational decode of the higher bits
of the address bus HADDR. Figure 9 shows the grammar rule for the
address decoder. The clock information is absent in the grammar
rule, which symboli zes a combinational behavior, and the
decoding logic is described using the pattern-action pairs.

Depending on the slave select signal, the appropriate slave unit is
selected and the control signal CTRL tells the type of transaction
that needs to be performed. The aggregate signal CTRL is
composed of several AHB signals like HWRITE, HTRANS, HBURST,
etc. Figure 10 shows the grammar description involved in the slave
module that includes a memory and a controller. The memory
behavior is described as: if the condition CS is true, then a '1 ' at
RWS causes a write and a ' 0' at RWS causes a read. The next line
fetches the address from the address-phase of the transfer. It says

to read the address (HADDR) at the arrival of the HCLK if the HSEL
signal is high, which is the address-phase. By default, the clock is
implemented as rising edge triggered and the reset as an
asynchronous reset.

Next, the slave controller reads the aggregate control word,
separated by commas. If the first bit pattern is seen, then it asserts
the chip select signal and de-asserts the RWS so that the RAM
outputs (i.e. a read operation) a single word. The second pattern
causes a write operation. The third pattern initiates a burst read of
unspecified length. The first transfer of a burst uses
HTRANS="10", followed by "11" for the remaining transfer and
terminates with a "00 " . This whole information is described as
follows: if a pattern of ('1', '0', "10", "001") is seen, the
first data of the burst is supplied and then it looks for a pattern
labeled as branch1 . The branch 1, as described below, is repeated
while there is a "11" at the HTRANS input; the other inputs are
don't cares, represented by the '- ' s. Finall y, branch 1 terminates
when a "00 " is seen at HTRANS.

5. RESULTS
We have performed several experiments using two core examples:
the LPC codec described in the previous section and a
Σ∆ demodulator. The Σ∆ demodulator has two FIR filters of length
31 and 69, one integrator and one differentiator. The DSP
functions are developed in C during the functional modeling
phase, and reused to build a PTM. We have decided to implement
the system using the AMBA AHB architecture. AMBA allows
single cycle bus master hand over. The master hand over cycle, the
data transfer cycles, and the delay in the glue logic is considered to
make a static estimation of the communication delay. The wai t

statements are used to add the delay time in the STM.

-- the memory block of slave_0
(RWS) : (CS) '1' { MEM(ADDR) <= HWDATA; }
 | '0' { HRDATA_0 <= MEM(ADDR); }
 ;

-- fetching the HADDR at the rising edge of the HCLK
-- of the address cycle
(HSEL) @HCLK : '1' { ADDR <= HADDR };

-- Protocol of AMBA Slave Controller
(HSEL, HWRITE, HTRANS, HBURST) @HCLK
 : '1', '0', "10", "000" { CS <= '1';
 RWS <= '0';
 HREADY <= '1'; }
 | '1', '1', "10", "000" { CS <= '1';
 RWS <= '1';
 HREADY <= '1'; }
 | '1', '0', "10", "001" { CS <= '1';
 RWS <= '0';
 HREADY <= '1'; }
 branch1

 | '1', '1', "10", "001" { CS <= '1';
 RWS <= '1';
 HREADY <= '1'; }
 branch2

 | reset { CS <= '0';
 RWS <= '0';
 HREADY <= '0'; }
 ;

branch1 : '-', '-', "11", '-' { CS <= '1';
 RWS <= '0';
 HREADY <= '1'; }
 branch1

 | '-', '-', "00", '-'
 ;

branch2 : '-', '-', "11", '-' { CS <= '1';
 RWS <= '1';
 HREADY <= '1'; }
 branch2

 | '-', '-', "00", '-'
 ;

Figure 10: MASIC description of the slave

Figure 8: Simplified view of the AMBA architecture

arbiter

address
decoder

HADDR_0
CTRL

HADDR

CTRL_1

CTRL_0

HADDR_1

HWDATA_0

HRDATA_0

HSEL_1

HSEL_0

HRDATA

HWDATA

HWDATA_1

HRDATA_1

sl
av

e#
0

co
nt

ro
lle

r

m
e

m
or

y

sl
av

e#
1

co
nt

ro
lle

r

m
e

m
or

y

m
as

te
r#

0

gl
ue

 lo
gi

c

M
IP

S
 c

or
e

m
as

te
r#

1

gl
ue

 lo
gi

c

M
IP

S
 c

or
e

-- gr ammar ru l e f or t he a ddre ss d ecod er

(HADDR_HI GH_BI T) : "0 0" { HSELv <= " 0001" ; }
 | "0 1" { HSELv <= "0010" ; }
 | "1 0" { HSELv <= "0100" ; }
 | "1 1" { HSELv <= "1000" ; }
 ;

Figure 9: MASIC description of address decoder

Next, the bus functional models (BFM) of MIPS32-4K cores, cycle
accurate description of the AMBA architecture and the glue logic
are used to build a BTM. The computation is stil l performed using
C functions with approximated delay figures.

Table 2 shows the code size of the MASIC and VHDL description
of the three TLMs for the two examples. The increase in
productivity in term of the design-hour could be guessed from the
bulk of VHDL code and the number of states needed in the VHDL
model. In the MASIC approach, the system transactions are
expressed in abstract grammar, from where the VHDL is generated
by our compiler.

Table 2: Code size and number of states
LPC Σ∆

MASIC VHDL MASIC VHDL
PTM (word count) 305 2596 276 2409
STM (word count) 337 2628 300 2447
BTM (word count) 2998 15865 2437 11952

Number of states in BTM - 176 - 142

Table 3: VHDL Simulation time
LPC Σ∆

PTM 13 min. 47.7 sec 8 min. 36.1 sec
STM 13 min. 47.7 sec 8 min. 36.2 sec
BTM 52 min. 41.2 sec 37 min. 23.5 sec

Table 3 shows the VHDL simulation time of these TLMs for 1 sec
of input data. The PTM/STM simulates much faster than the BTM,
because they do not perform the intricate signaling protocol of data
transaction, instead they just uses get and put procedures to
FIFO. Such speedups are highly beneficial in an iterative design
flow. The simulation time of PTM and STM remains more or less
the same, as these models just differ by a couple of wait

statements. We compare the communication delay found from the
STM with the clock true delay found from the BTM. The
communication delay figures found from the STM vary only by
±2.98% compared to the cycle accurate delay figures found from
the BTM simulation.

6. CONCLUSION
We have presented three TLMs in the context of system design for
DSP applications. The formulation of these TLMs eases the design
task of realizing an implementation model from an abstract
functional model, the exploration of the design space at a higher
level of abstraction, and the reuse of predesigned cores and HW
blocks using their interface description. In addition, we have
shown a unique language support to build the TLMs with ease.
Though the work is described in the context of the MASIC
methodology, any DSP system design methodology would benefit
from the systematic formulation of these TLMs.

While the BTM provides a synthesizable description of the
communication architecture, the PTM and STM are meant for
eff icient system simulation. To gain further simulation speedup we
are considering the compilation of the grammar description of the
PTM and STM to SystemC, instead of VHDL. Currently the glue
logic for embedded cores is written manually. This task can be
automated using the ideas presented in [23]. So far, only SDF
examples have been considered. However, the methodology is not
restricted to SDFs. To model a general process network a dynamic
scheduler needs to be built. Currently the communication delay is
not estimated using any rigorous technique. The simulation
accuracy of the STM can be improved by using the delay figures
found from the trace based analysis technique shown in [22].

7. REFERENCES
[1] J.A. Rowson and A. Sangiovanni-Vincentell i, "Interface Based

Design," in Proc. DAC, pp. 178-183, Jun. 1997.
[2] C. K. Lennard, P. Schaumont, G. Jong, A. Haverinen, and P. Hardee,

"Standards for system-level design: Practical reali ty or solution in
search of a question," in Proc. DATE Conf., pp.576-583, Mar. 2000.

[3] P. van der Wolf, P. Lieverse, M. Goel, D.L. Hei and K. Vissers, "An
MPEG-2 Decoder Case Study as a Driver for a System Level Design
Methodology," in Proc. CODES, pp. 33-37, May 1999.

[4] E.A. de Kock, et al. "YAPI: Application Modeling for Signal
Processing Application," in Proc. DAC, pp. 402-405, Jun. 2000.

[5] M. Sgroi, L. Lavagno and A. Sangiovanni-Vincentelli , "Formal
Models for Embedded Systems Design," IEEE Design & Test of
Comp., vol. 17, no. 2, pp. 14-27, Jun. 2000.

[6] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey and A.
Sangiovanni-Vincentelli , "System-Level Design: Orthogonalization
of Concerns and Platform based Design," IEEE Trans. CAD, vol. 19,
pp. 1523-1543, Dec. 2000.

[7] T. Grötker et al., System Design with SystemC, Kluwer Academic
Publishers, Norwell, MA, 2002.

[8] R. Dömer, D.D. Gajski and A. Gerstlauer, "SpecC Methodology for
High-Level Modeling," in Proc. 9th IEEE/DATC Electronic Design
Processes Workshop, Monterey, CA, Apr. 2002.

[9] L. Cai and D. Gajski, "Transaction Level Modeling: An Overview",
in Proc. CODES+ISSS, pp. 19-24, Newport Beach, CA, Oct. 2003.

[10] A. Hemani, Abhiji t K. Deb, J. Öberg, A. Postula, D. Lindqvist and B.
Fjellborg, "System Level Virtual Prototyping of DSP SOCs Using
Grammar Based Approach," Kluwer Design Automation for
Embedded Systems, vol. 5, no. 3, pp. 295-311, Aug. 2000.

[11] Abhiji t K. Deb, A. Jantsch, and J. Öberg, "System Design for DSP
Applications Using the MASIC Methodology," in Proc. DATE Conf.,
vol. 1, pp. 630-635, Feb. 2004.

[12] G. Kahn, "The Semantics of a Simple Language for Parallel
Programming," in Proc. IFIP Congress '74, pp. 471-474, Aug. 1974.

[13] E.A. Lee and D.G. Messerschmitt, "Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing," IEEE Trans.
Comp., vol.C-36, no. 1, pp. 24-35, Jan. 1987.

[14] J.T. Buck and E.A. Lee, "Scheduling Dynamic Dataflow Graphs with
Bounded Memory Using the Token Flow Model," in Proc. Int. Conf.
Acoustics Speech & Signal Processing, pp. 429-432, Apr. 1993.

[15] A. Seawright, F. Brewer, "Clairvoyant: A Synthesis System for
Production-based Specification," IEEE Trans. VLSI , vol. 2 no. 2, pp.
172-185, June 1994.

[16] J. Öberg, A. Kumar, and A. Hemani, "Grammar-Based hardware
synthesis from port size independent specifications," IEEE Trans.
VLSI, vol. 8, no. 2, pp. 184-194, April 2000.

[17] R. Siegmund and D. Müller, "Automatic Synthesis of
Communication Controller Hardware from Protocol Specifications,"
IEEE Design & Test of Comp., vol. 19 no. 4, pp. 84-95, Jul-Aug.
2002.

[18] A. Seawright, U. Holtmann, W. Meyer, B. Pangrle, R. Verbrugghe, J.
Buck, "A system for compiling and debugging structured data
processing controllers," in Proc. Euro DAC., pp. 86-91, Sept. 1996.

[19] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley, MA, 1986.

[20] T. Basten and J. Hoogerbrugge, "Eff icient Execution of Process
Networks,” in Proc. Communicating Process Architectures, pp. 1-14,
IOS Press, Amsterdam, 2001.

[21] S. Kumar et al., "A Network on Chip Architecture and Design
Methodology," in Proc. IEEE Comp. Society Annual Symposium on
VLSI, pp. 105-112, Apr. 2002.

[22] K. Lahiri, A. Raghunathan and S. Dey, "System-Level Performance
Analysis for Designing On-Chip Communication Architectures,"
IEEE Trans. CAD, vol. 20, no. 6, pp. 768-783, Jun. 2001.

[23] R. Passerone, J.A. Rowson and A. Sangiovanni-Vincentell i ,
"Automatic Synthesis of Interfaces between Incompatible Protocols,"
in Proc. DAC, pp. 8-13, Jun. 1998.

[24] AMBA on-chip bus specification [Online], http://www.arm.com
[25] MIPS32 4K Processor Core Family Integrator's Manual, [Online],

http://www.mips.com

